If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60+20(t)=2t^2
We move all terms to the left:
60+20(t)-(2t^2)=0
determiningTheFunctionDomain -2t^2+20t+60=0
a = -2; b = 20; c = +60;
Δ = b2-4ac
Δ = 202-4·(-2)·60
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{55}}{2*-2}=\frac{-20-4\sqrt{55}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{55}}{2*-2}=\frac{-20+4\sqrt{55}}{-4} $
| 2+1.10x=5+.95 | | 8x^2-7=24x-0 | | -7=-c/6+16 | | 3t+5t=9 | | 6x+2(4x+7)=5x | | 14=3(t+5)–-5 | | 40=5(3x+2)-5x | | 3/8+1/2=c | | 6x-2=-6x-2 | | 4d-11=15-9 | | -6x=4x+50 | | v/5+2=27 | | -6x+2=-6x-1 | | 4-f/5=f+1/3 | | 4.5-1.25=y | | 4x^2+6x-22=0 | | -5d–-9d=8 | | X+(x+5)=83 | | 5(r+6)=-66 | | 11j=5j+6 | | 5/2x-4=6-7/3x | | -21(v-991)=-42 | | 3y-15+120=180 | | 16t^2+40t+5=0 | | -15+w=-w+19 | | 9(x-6)=2x-4.3 | | 35+24n=395 | | 2*6.36^2+8y=121.5 | | -3(d+3)=-15 | | (x(1.006875))=50 | | 8x-14=-38 | | 5(x+4)^2−9=11 |